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Abstract:  

Modern radar systems frequently encounter data loss during signal acquisition due to hardware failures, 

interference, or intermittent sampling, severely degrading spectral estimation accuracy. This work introduces an 

adaptive weighted multitaper method integrated with a circular memory architecture to address spectral leakage 

under adverse conditions with substantial missing data. Our approach employs a novel weighting scheme were 

systematically optimized through grid search across 200 parameter combinations using 500 Monte Carlo trials. 

Testing across SNR levels 0-30 dB with 30% missing data reveals substantial improvements Comparative 

analysis against the Bartlett, Welch, and Thomson Multitaper methods. For typical radar parameters (N=1024, 

K=8, M=128), our method requires approximately 8,192 operations versus 40,960 for Thomson MTM, 

representing a   kind of 80% computational reduction while maintaining superior performance. The method 

proves effective for radar applications requiring robust spectral estimation despite incomplete data acquisition, 

maintaining computational efficiency suitable for real-time processing. 

 

Keywords: Spectral estimation, Circular memory, Data loss, Power spectrum, Adaptive weighting, Multitaper 

method, Radar signal processing. 

 الملخص 

للبيانات أثناء عملية اقتناء الإشارة، وذلك بسبب أعطال الأجهزة أو التداخلات   تواجه أنظمة الرادار الحديثة فقداناً متكرراً 

متعددة  طريقة  البحث  هذا  يقدم  الطيفي.  التقدير  دقة  على  كبير  بشكل  يؤثر  مما  متقطع،  بشكل  العينات  أخذ  أو  الخارجية 

يح تكيفي، مدمجة مع معمارية ذاكرة دائرية، لمعالجة مشكلة التسرب الطيفي في ظل الظروف القاسية التي  الأوزان بترج

آلية ترجيح   البيانات. يعتمد نهجنا على  في  كبيراً  فقداناً  الشبكي عبر   مبتكرةتتضمن  البحث   200بشكل منهجي من خلال 

 .كارلومحاكاة مونت   500تركيبة من المعاملات باستخدام 

mailto:sanouci@histtam.edu.ly
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من   الضوضاء  إلى  الإشارة  نسبة  مستويات  عبر  الاختبارات  فقدان    30إلى    0أظهرت  مع  البيانات  30ديسيبل  من   %

سون متعدد  وويلش وثوم  التحليل المقارن مع طرق بارتليت  ه يؤكد  بما  في دقة التردد وكبت الضوضاء،  وسةتحسينات ملم

)الأوزان النموذجية  الرادار  لمعاملات  بالنسبة   .N=1024  ،K=8  ،M=128  حوالي طريقتنا  تتطلب  عملية   8,192(، 

في التعقيد الحسابي مع   تقريبا%  80لطريقة ثومسون متعدد الأوزان، وهو ما يمثل انخفاضاً بنسبة    40,960حسابية مقابل  

 ً  رغم عدم اكتمال اقتناء  الحفاظ على أداء متفوق. أثبتت الطريقة فعاليتها في تطبيقات الرادار التي تتطلب تقديراً طيفياً قويا

 .البيانات، مع الحفاظ على كفاءة حسابية ملائمة للمعالجة الآنية

 

المفتاحية: متعددة   الكلمات  طريقة  التكيفي،  الترجيح  القدرة،  طيف  البيانات،  فقدان  الدائرية،  الذاكرة  الطيفي،  التقدير 

 .الاوزان، معالجة إشارات الرادار 
Introduction 

Power spectral density estimation forms the backbone of radar signal analysis, enabling target detection, 

classification, and parameter extraction. Modern radar systems must process signals under challenging 

conditions, including hardware failures, interference, and intermittent data acquisition, which can result in 

missing samples [1]. Traditional spectral estimation methods struggle when significant portions of the data are 

unavailable. 

Among these challenges, spectral leakage remains particularly problematic when applying discrete Fourier 

transforms to finite data sequences [3]. This phenomenon creates artificial frequency components, reduces 

resolution between closely-spaced peaks, and elevates side lobe levels that mask weak signal returns. The 

problem intensifies when data segments contain missing samples, leading to biased spectrum estimates and 

degraded detection performance. 

To address these complications, Bartlett's periodogram averaging method [1] and Welch's overlapped approach 

[2] provide foundational solutions but assume complete data availability. Thomson's multitaper technique [4] 

offers improved bias-variance tradeoffs through multiple orthogonal tapers, yet requires substantial 

computational resources and performs poorly with irregular data patterns. 

Current research addresses missing data through various approaches: zero-padding introduces bias, interpolation 

works only for small gaps, and gapped-data methods increase estimation variance. Recent work by Zhang and 

Liu [5] explored evolutionary optimization for spectral estimation, while Chen et al. [6] investigated neural 

network approaches. However, these methods fail to provide integrated solutions for real-time radar processing 

with substantial data loss. 

This study introduces an adaptive weighted multitaper estimator integrated with a circular memory architecture. 

Our contributions include: (1) a novel segment weighting scheme based on energy and variance statistics with 

systematically optimized parameters, (2) efficient handling of up to 30% missing data with maintained spectral 

fidelity, and (3) computational complexity suitable for operational radar systems with 80% reduction compared 

to Thomson MTM. 

Literature review  

A. Classical Spectral Estimation Methods 

Bartlett's method [1] established non-parametric spectrum estimation by averaging periodograms from non-

overlapping data segments. While this reduces estimation variance, frequency resolution decreases 

proportionally with segment count. Welch's modification [2] introduced overlapping segments and window 

functions, achieving better variance-resolution tradeoffs. 

The Welch spectral estimate is given by: 

𝑃̂𝑊𝑒𝑙𝑐ℎ(𝑓) =  (
1

𝐾
) ∑𝑘 = (0𝐾 − 1

|𝑋𝑘(𝑓)|2

𝑊(𝑓)
)

2

     (1) 

where W(f) represents the window function frequency response and 𝑋𝑘(f) denotes the k-th segment DFT. 

B. Advanced Spectral Methods 

Thomson's multitaper method [4] employs discrete prolate spheroidal sequences (DPSS) as optimal tapers, 

concentrating energy within a specified bandwidth while minimizing leakage. The multitaper estimate becomes: 
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𝑃̂𝑀𝑇𝑀(𝑓) =  (
1

𝐾
) ∑𝑘 = 0𝐾 − 1 |∑𝑛 = 0𝑁 − 1 ℎ𝑘[𝑛]𝑥[𝑛]𝑒 − 𝑗2𝜋𝑓𝑛|²     (2) 

where ℎ𝑘[n] represents the k-th DPSS taper. This approach reduces bias but increases computational complexity 

significantly. 

C. Data Loss Handling Techniques 

Missing data presents fundamental challenges in spectral estimation. Common approaches include zero-filling 

(introduces bias), interpolation (limited to small gaps), and direct computation from available samples 

(increased variance). Bretthorst [18] demonstrated Bayesian methods for irregular sampling, while Stoica and 

Babu [19] proposed SPICE, showing robustness to missing data patterns. However, these methods often 

sacrifice either computational efficiency or spectral accuracy. 

D. Research Gap and Contributions 

Despite these advances, existing methods fail to simultaneously address three critical requirements for 

operational radar systems: (1) maintaining spectral fidelity under >20% data loss while preserving frequency 

resolution, (2) computational efficiency for real-time processing with latency <10 ms per frame, and (3) 

robustness across diverse noise conditions spanning SNR ranges of 0-30 dB without parameter tuning. Classical 

methods like Bartlett and Welch assume complete data, Thomson MTM demands excessive computation (5× 

overhead), and recent machine learning approaches [6], [25] require extensive training data and lack theoretical 

guarantees. This study bridges this gap through an integrated adaptive weighting framework that combines 

statistical segment quality assessment with circular memory architecture for continuous radar data streams. 

 PROPOSED METHODOLOGY 

A. Circular Memory Architecture 

The circular buffer maintains L samples organized efficiently for streaming radar data, enabling continuous 

acquisition without buffer reallocation: 

buffer[ptr] = x[n], ptr = (ptr + 1) mod L     (3) 

where ptr indicates the current write pointer, ensuring efficient memory utilization for real-time radar data 

streams. 

B. Adaptive Weighted Multitaper Estimation 

1) Signal Segmentation 

Input signal x[n] of length N undergoes division into K overlapping segments to enhance statistical reliability: 

𝑋𝑘[m] = x[kR + m], m = 0,1,...,M-1, k = 0,1,...,K-1     (4) 

where R = M(1 - ρ) represents the step size, and ρ denotes the overlap ratio (typically 0.5 for optimal variance 

reduction). 

2) Adaptive Weight Calculation 

For each segment k, we compute adaptive weight 𝛼𝑘 incorporating energy and statistical characteristics: 

𝛼𝑘 = 𝛼𝑘 × exp(-β × 𝐸𝑘/M) × (1 + γ × 𝑆𝑘)     (5) 

where Ek = ∑m=0
M-1 |xk[m]|² (segment energy) and Sk = var(xk[m]) (segment variance).  

3) Parameter Selection and Optimization 

The parameters 𝛼0 = 1.0, β = 0.05, and γ = 0.2 were determined through systematic optimization across 500 

Monte Carlo trials spanning SNR levels 0-30 dB with 30% random data loss. The base weight 𝛼0 provides unit 

normalization ensuring unbiased spectral integration. The energy attenuation factor β = 0.05 prevents over-

weighting of high-energy segments that may contain saturation artifacts or strong interference. 

The systematic optimization involved exhaustive grid search across β ∈ [0.01, 0.20] with step 0.01, and γ∈ 

[0.05, 0.50] with step 0.05, testing all 200 parameter combinations. Performance evaluation used Quality Index 

(QI) as the primary metric. The selected parameters β=0.05 and γ=0.20 achieved optimal balance: values β>0.08 

caused over-attenuation of valid high-energy segments (QI dropped to 0.982), while γ>0.30 amplified noise 
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variance artifacts (QI reduced to 0.976). Performance degradation exceeded 5% QI threshold outside the ranges 

β ∈ [0.03, 0.08] and γ∈ [0.15, 0.30]. 

The variance enhancement factor γ = 0.2 emphasizes segments with signal activity over pure noise regions, 

improving detection of weak targets embedded in noise. Section V-G presents comprehensive sensitivity 

analysis validating these parameter choices across diverse operating conditions. 

4) Windowed Periodogram Computation 

Each segment undergoes Hamming windowing to reduce spectral leakage: 

w[m] = 0.54 - 0.46cos(2πm/(M-1))     (6) 

The windowed periodogram for each segment k becomes: 

Pk(f) = |∑m=0M-1 xk[m]w[m]e-j2πfm|² / ∑m=0M-1 w²[m]     (7) 

5) Weighted Spectrum Integration 

The final spectrum estimate combines weighted periodograms from all valid segments: 

P̂(f) = ∑k=0K-1 αkPk(f) / ∑k=0K-1 αk     (8) 

C. Missing Data Handling Strategy 

Missing samples receive special treatment based on data loss patterns. For random loss, segments containing 

>50% missing data receive zero weight (𝛼0 = 0), effectively excluding them from spectral integration. For burst 

loss patterns common in radar applications due to momentary signal obstruction or receiver saturation, we 

implement adaptive segmentation that avoids boundaries of missing data blocks. Mixed patterns combine both 

strategies, with segment quality assessment determining the optimal approach. This adaptive exclusion 

maintains spectral integrity while maximizing utilization of available data. 

D. Computational Complexity Analysis 

The algorithm complexity comprises three main components: segmentation O(N), weight calculation O(KM), 

and FFT computation O(KM log M). The total complexity is O(KM log M), comparing favorably with 

Thomson MTM at O(Ktaber × KM log M), where Ktaber  typically equals 5-8 for adequate spectral estimation. 

For typical radar parameters (N=1024 samples, K=8 segments, M=128 samples per segment), the proposed 

method requires approximately 8,192 floating-point operations compared to 40,960 operations for Thomson 

MTM with Ktaber =5. This represents an 80% computational reduction while maintaining superior performance 

across all evaluated metrics (Table I). The reduced complexity enables real-time implementation on embedded 

radar processors with latency <5.2 ms per frame. 

Experimental Setup 

A. Signal Model 

The test signal comprises three sinusoidal components with distinct frequencies to evaluate spectral resolution: 

x[n] = 𝐴1cos(2π𝑓1nTs) + 𝐴2cos(2π𝑓2nTs) + 𝐴3cos(2π𝑓3nTs)     (9) 

with frequencies 𝑓1 = 100 Hz, 𝑓2 = 200 Hz, 𝑓3 = 350 Hz, amplitude A = 1, and sampling frequency 𝐹𝑠 = 1000 

Hz. This configuration tests the method's ability to resolve closely-spaced and widely-separated frequency 

components. 

B. Noise Model 

Additive white Gaussian noise (AWGN) is added to simulate realistic radar conditions: 

y[n] = x[n] + σn[n]     (10) 

where σ² = 𝑃𝑠𝑖𝑔𝑛𝑎𝑙/(10^(SNR/10)) and n[n] ~ N(0,1). The SNR range 0-30 dB covers typical radar operating 

conditions from challenging (low SNR) to favorable (high SNR). 

C. Enhanced Missing Data Simulation 

Three missing data patterns simulate realistic radar failure modes: 
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• Random Loss: 30% of samples randomly set to zero, simulating uncorrelated dropouts from thermal noise or 

weak signal conditions. 

• Burst Loss: Consecutive blocks of 10-50 samples removed, representing receiver saturation, momentary 

obstruction, or synchronization loss. 

• Mixed Patterns: Combination of random (20%) and burst (10%) losses, reflecting complex operational 

scenarios with multiple simultaneous degradation mechanisms. 

D. Performance Metrics 

Four complementary metrics quantify spectral estimation performance: 

• Quality Index (QI): Normalized cross-correlation between estimated and reference spectra, measuring overall 

spectral fidelity (range: 0-1, higher better). 

• Frequency Resolution Error (FRE): Normalized root mean square error quantifying deviation from ideal 

spectrum (lower better). 

•Output SNR: Ratio of peak signal power to noise floor in dB, indicating processing gain or loss. 

• Peak Side Lobe Ratio (PSLR): Ratio of main lobe peak to highest side lobe in dB, measuring spectral leakage 

suppression (more negative better). 

RESULTS AND DISCUSSION 

A. Power Spectral Density Comparison 

Figure 1 presents comparative power spectral density estimates at SNR = 20 dB with 30% missing data. Our 

method exhibits significantly improved main lobe definition with notably reduced spectral leakage compared to 

classical approaches. Side lobe levels measure 15 dB lower than Bartlett and 8 dB lower than Welch methods, 

directly improving weak signal detection capability. The three frequency components (100, 200, 350 Hz) are 

clearly resolved with minimal inter-component interference. 

 
Figure 1: Comparative power spectral density estimation showing proposed method (blue), Bartlett (red), 

Welch (green), and Thomson MTM (magenta) at SNR=20dB with 30% missing data. 
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B. Quality Index Performance 

Figure 2 demonstrates Quality Index versus SNR performance across the 0-30 dB range. At low SNR (0-5 dB), 

the proposed method achieves QI = 0.93-0.95 compared to Bartlett's 0.65-0.75 and Welch's 0.78-0.82. This 15-

20% improvement proves critical for target detection in challenging environments. 

At moderate SNR (10-20 dB), the performance gap widens: our method maintains QI > 0.96 while classical 

methods plateau at 0.85-0.88. At high SNR (25-30 dB), all methods converge above 0.95, with the proposed 

approach maintaining a slight advantage (QI = 0.997). The consistent superiority across all SNR regimes 

validates the adaptive weighting strategy. 

 
Figure 2: Quality Index versus SNR showing consistent superiority of proposed method (15-20% improvement 

at low SNR). 

C. Frequency Resolution Error Analysis 

Figure 3 presents Frequency Resolution Error versus SNR performance. The proposed method maintains stable 

FRE = 1.5-1.8 across all SNR levels, demonstrating robustness to noise variations. In contrast, Bartlett's method 

shows FRE = 3.5-4.2, Welch achieves 2.8-3.2, and Thomson MTM reaches 2.0-2.3. The 40-50% reduction in 

FRE compared to classical methods enables more accurate frequency component identification, crucial for 

Doppler radar and frequency-hopping communication systems. 

 
Figure. 3: Frequency Resolution Error showing stable performance of proposed method (40-50% reduction vs 

classical methods). 
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D. Output SNR and Processing Gain Analysis 

Figure 4 illustrates the input-output SNR relationship with a 45° reference line representing ideal preservation. 

For input SNR = 10 dB, the proposed method achieves 14.6 dB effective output SNR (representing a 4.6 dB 

equivalent processing gain through multi-segment averaging) versus Bartlett's 8.5 dB output (2.5 dB 

degradation).* 

*Important Note: The "processing gain" represents effective SNR improvement through intelligent segment 

weighting and multi-segment statistical averaging, not true signal amplification. The adaptive weighting 

emphasizes high-quality segments while suppressing corrupted portions, yielding superior spectral estimates 

that behave as if processed from higher-SNR data. This effective gain proves valuable for weak target detection 

in radar applications. 

 
Figure 4: Output vs Input SNR showing effective processing gain through adaptive weighting and multi-

segment averaging (not true signal amplification). 

E. Peak Side Lobe Ratio Evaluation 

Figure 5 presents PSLR performance versus SNR. The proposed method achieves -16 dB PSLR at SNR = 20 

dB, compared to -12 dB for Welch, -14 dB for Thomson MTM, and -8 dB for Bartlett. The 4 dB PSLR 

advantage over Thomson MTM translates to approximately 2.5× better dynamic range for detecting weak 

targets near strong returns, crucial for multi-target radar scenarios and clutter suppression. 

 
Figure 5: Peak Side Lobe Ratio demonstrating superior spectral leakage suppression (4 dB advantage over 

Thomson MTM). 
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F. Comparative Performance Summary 

Figure 6 presents a hexagonal radar chart comparing normalized performance across six dimensions: QI, (1-

FRE), Normalized SNR, Normalized PSLR, Processing Speed, and Robustness. The proposed method achieves 

85-97% across all metrics, demonstrating balanced excellence. Table 1 provides detailed quantitative 

comparison at SNR = 20 dB. 

 
Figure 6: Hexagonal radar chart showing balanced superiority across all performance dimensions. 

Table 1: Comparative Performance Metrics at Snr = 20 dB 

Method QI FRE PSLR (dB) Processing Time (ms) Improvement vs Best Classical 

Bartlett 0.75 3.8 -8 2.3 Baseline 

Welch 0.82 3.0 -12 3.8 +9.3% 

Thomson MTM 0.85 2.1 -14 15.6 +13.3% 

Proposed 0.997 1.7 -16 5.2 +17.2% 

 

G. Parameter Sensitivity Analysis 

Tables 2, 3, and 4 present comprehensive sensitivity analysis validating parameter choices across varying 

conditions. 

Table 2: Performance Sensitivity to Energy Factor β. 

β Value QI FRE PSLR (dB) Comments 

0.03 0.994 1.8 -15.2 Slightly reduced discrimination 

0.05 0.997 1.7 -16.0 Optimal performance 

0.08 0.995 1.9 -15.8 Over-attenuation effects 

0.10 0.992 2.1 -15.3 Reduced energy sensitivity 

0.15 0.988 2.4 -14.8 Poor segment weighting 

 

Table 3: Performance Sensitivity to Variance Factor γ. 

γ Value QI FRE PSLR (dB) Comments 

0.10 0.991 1.9 -15.2 Under-emphasis of variance 

0.15 0.993 1.8 -15.5 Good but not optimal 

0.20 0.997 1.7 -16.0 Optimal balance 

0.30 0.994 1.9 -15.7 Over-emphasis artifacts 

0.40 0.989 2.2 -15.1 Variance distortion 

 



370| Journal of Scientific and Human Dimensions  

 

Table 4: Performance Under Different Data Loss Ratios 

Data Loss % QI FRE PSLR (dB) Usable Segments Degradation 

10% 0.998 1.5 -17.2 8/8 Minimal 

20% 0.997 1.6 -16.5 7/8 Slight 

30% 0.997 1.7 -16.0 6/8 Acceptable 

40% 0.990 2.1 -14.8 4/8 Moderate 

50% 0.975 2.8 -12.5 3/8 Significant 

H. Enhanced Statistical Validation 

Monte Carlo analysis (1000 trials) with ANOVA confirms statistical significance of performance improvements. 

F-statistic = 247.3 (p < 0.001) indicates highly significant differences between methods. Post-hoc Tukey HSD 

tests show all pairwise comparisons achieve p < 0.001, confirming the superior performance of the proposed 

method is not due to random chance. 

Table 5 presents comprehensive Monte Carlo statistics at SNR = 20 dB with 30% data loss, demonstrating high 

consistency across diverse noise realizations and missing data patterns. The low standard deviations (<0.2% for 

QI, <5% for FRE) and minimal outlier counts (<0.2%) validate the method's robustness. 

Table 5: Monte Carlo Statistics (1000 Trials, SNR=20db, 30% Loss) 
Metric Mean Std Dev 95% CI Outliers 

QI 0.9968 0.0012 [0.994, 0.998] 2 (0.2%) 

FRE 1.698 0.078 [1.6, 1.8] 1 (0.1%) 

PSLR (dB) -15.98 0.31 [-16.3, -15.7] 0 (0%) 

I. Data Loss Performance Boundaries 

At 50% data loss with only 3 usable segments remaining (Table IV), the method demonstrates QI=0.975 

through strategic quality-over-quantity segment selection. The adaptive weighting 𝛼𝐾 preferentially selects 

segments with highest integrity, maintaining spectral fidelity despite dramatically reduced statistical averaging. 

However, this represents the practical operational limit—beyond 50% loss, insufficient segments remain for 

reliable spectral reconstruction. The transition from "acceptable" (30% loss) to "significant" degradation (50% 

loss) occurs when fewer than 4 segments survive the 50% missing-data threshold, compromising the statistical 

foundation of multi-segment estimation. 

Limitations And Future Work 

A. Current Limitations 

Performance degradation beyond 50% data loss: Table IV demonstrates QI drops to 0.975 at 50% loss with only 

3 usable segments remaining. The method requires minimum segment density for reliable statistics—below this 

threshold, insufficient data exists for accurate spectral reconstruction regardless of algorithm sophistication. 

Stationary signal assumption: The method assumes spectral characteristics remain constant within the 1024-

sample analysis window (1.024 seconds at Fs=1000 Hz). Non-stationary signals with time-varying spectra show 

performance degradation. Testing with frequency-modulated chirp signals revealed 15-25% QI reduction, 

indicating the need for time-frequency analysis extensions for rapidly varying spectra. 

Minimum segment length requirement: Segments shorter than 64 samples (M<64) provide insufficient 

frequency resolution and statistical reliability. This constraint limits applicability for ultra-short data records or 

applications requiring extremely fine time localization, such as transient radar event detection. 

B. Future Research Directions 

Integration with time-frequency analysis: Extending the method to non-stationary signals through Short-Time 

Fourier Transform (STFT) or wavelet-based adaptive segmentation would enable processing of frequency-

modulated and pulsed radar signals. Adaptive window length selection based on local stationarity could 

maintain performance for time-varying spectra. 

Machine learning optimization of parameters: While α0=1.0, β=0.05, γ=0.2 prove optimal across tested 

conditions, reinforcement learning could dynamically adjust parameters based on real-time signal 

characteristics. Neural network-based segment quality prediction might improve adaptation to novel interference 

patterns not present in training data. 
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Extension to MIMO radar systems: multi-channel radar systems with spatial-temporal processing require joint 

optimization across antenna array elements. Extending adaptive weighting to spatial-spectral domains could 

enhance target localization while maintaining robustness to individual channel failures. 

Hardware acceleration: GPU implementation using CUDA or FPGA deployment could reduce processing 

latency below 1 ms for real-time applications. Parallel segment processing and optimized FFT libraries would 

enable scaling to higher bandwidth signals and longer integration times. 

Conclusions 

We present an adaptive weighted multitaper estimator that maintains spectral fidelity under 30% data loss—a 

critical threshold for operational radar systems. The novel weighting scheme 𝛼𝑘 = 𝛼0 × exp(-β × 𝐸𝑘/M) × (1 + γ 

× 𝑆𝑘) intelligently combines segment energy and variance statistics, enabling robust spectral estimation despite 

incomplete data acquisition. Systematic parameter optimization through 200-combination grid search 

established optimal values β=0.05 and γ=0.20, validated across 1000 Monte Carlo trials. 

Performance evaluation demonstrates 15-40% improvements across complementary metrics: Quality Index 

reaches 0.997 (17.2% advantage over best classical method), Frequency Resolution Error maintains 1.7 (40-50% 

reduction), and Peak Side Lobe Ratio achieves -16 dB (4 dB superiority over Thomson MTM). These gains 

prove statistically significant (ANOVA p<0.001) and consistent across SNR ranges 0-30 dB, validating the 

method's practical utility. 

Computationally, our approach requires approximately 8,192 operations versus 40,960 for Thomson MTM—an 

80% reduction enabling real-time implementation on embedded radar processors with <5.2 ms latency per 

frame. This efficiency-performance balance addresses the critical gap in existing methods that sacrifice either 

computational tractability or spectral accuracy. 

The methodology offers immediate applications across radar, sonar, and communication systems requiring 

frequency analysis despite incomplete data acquisition. Integration with circular memory architecture ensures 

seamless operation in continuous data streams common to operational platforms. Future extensions to time-

frequency analysis and MIMO radar systems promise broader applicability while maintaining the core 

advantages of adaptive segment weighting. 

Data And Code Availability 

Hardware specifications: Intel Core i7-10700K processor @ 3.8 GHz, 32 GB DDR4-3200 RAM, Windows 11 

Pro 64-bit operating system. Software environment: MATLAB R2023a with Signal Processing Toolbox and 

Statistics Toolbox; Python 3.9.16 with NumPy 1.24.3, SciPy 1.10.1, Matplotlib 3.7.1. All experimental 

parameters, random seeds, and analysis scripts are documented in Appendix A for full reproducibility. Research 

data and implementation code are available from the corresponding author upon reasonable request. 
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Appendix A: Detailed Parameter Tables 

Table 1: B1complete Experimental Parameters 
Parameter Value Description 

Sampling Frequency (Fs) 1000 Hz Signal sampling rate 

Signal Length (N) 1024 samples Total signal duration 

Segment Length (M) 128 samples Individual segment size 

Segment Count (K) 8 Number of overlapping segments 

Overlap Ratio (ρ) 0.5 50% segment overlap 

Base Weight (α0) 1.0 Normalization constant 

Energy Factor (β) 0.05 Energy attenuation parameter 

Variance Factor (γ) 0.2 Variance enhancement parameter 

Window Function Hamming Spectral windowing function 

Missing Data Ratio 30% Simulated data loss ratio 

Signal Frequencies 100, 200, 350 Hz Multi-tone test signal 

Monte Carlo Trials 1000 Statistical validation trials 

 

Table 2: B2hardware And Software Environment 
Component Specification 

Processor Intel Core i7-10700K @ 3.8 GHz 

Memory 32 GB DDR4-3200 

Operating System Windows 11 Pro 64-bit 

MATLAB Version R2023a 

Required Toolboxes Signal Processing, Statistics 

Python Version 3.9.16 

Required Packages NumPy 1.24.3, SciPy 1.10.1, Matplotlib 3.7.1 

Development Environment PyCharm Professional 2023.1 

Parallel Computing 8-Core parallel execution 

Storage 1 TB NVMe SSD 
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