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Abstract:

Modern radar systems frequently encounter data loss during signal acquisition due to hardware failures,
interference, or intermittent sampling, severely degrading spectral estimation accuracy. This work introduces an
adaptive weighted multitaper method integrated with a circular memory architecture to address spectral leakage
under adverse conditions with substantial missing data. Our approach employs a novel weighting scheme were
systematically optimized through grid search across 200 parameter combinations using 500 Monte Carlo trials.
Testing across SNR levels 0-30 dB with 30% missing data reveals substantial improvements Comparative
analysis against the Bartlett, Welch, and Thomson Multitaper methods. For typical radar parameters (N=1024,
K=8, M=128), our method requires approximately 8,192 operations versus 40,960 for Thomson MTM,
representing a kind of 80% computational reduction while maintaining superior performance. The method
proves effective for radar applications requiring robust spectral estimation despite incomplete data acquisition,
maintaining computational efficiency suitable for real-time processing.

Keywords: Spectral estimation, Circular memory, Data loss, Power spectrum, Adaptive weighting, Multitaper
method, Radar signal processing.
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Introduction
Power spectral density estimation forms the backbone of radar signal analysis, enabling target detection,
classification, and parameter extraction. Modern radar systems must process signals under challenging
conditions, including hardware failures, interference, and intermittent data acquisition, which can result in
missing samples [1]. Traditional spectral estimation methods struggle when significant portions of the data are
unavailable.

Among these challenges, spectral leakage remains particularly problematic when applying discrete Fourier
transforms to finite data sequences [3]. This phenomenon creates artificial frequency components, reduces
resolution between closely-spaced peaks, and elevates side lobe levels that mask weak signal returns. The
problem intensifies when data segments contain missing samples, leading to biased spectrum estimates and
degraded detection performance.

To address these complications, Bartlett's periodogram averaging method [1] and Welch's overlapped approach
[2] provide foundational solutions but assume complete data availability. Thomson's multitaper technique [4]
offers improved bias-variance tradeoffs through multiple orthogonal tapers, yet requires substantial
computational resources and performs poorly with irregular data patterns.

Current research addresses missing data through various approaches: zero-padding introduces bias, interpolation
works only for small gaps, and gapped-data methods increase estimation variance. Recent work by Zhang and
Liu [5] explored evolutionary optimization for spectral estimation, while Chen et al. [6] investigated neural
network approaches. However, these methods fail to provide integrated solutions for real-time radar processing
with substantial data loss.

This study introduces an adaptive weighted multitaper estimator integrated with a circular memory architecture.
Our contributions include: (1) a novel segment weighting scheme based on energy and variance statistics with
systematically optimized parameters, (2) efficient handling of up to 30% missing data with maintained spectral
fidelity, and (3) computational complexity suitable for operational radar systems with 80% reduction compared
to Thomson MTM.

Literature review

A. Classical Spectral Estimation Methods

Bartlett's method [1] established non-parametric spectrum estimation by averaging periodograms from non-
overlapping data segments. While this reduces estimation variance, frequency resolution decreases
proportionally with segment count. Welch's modification [2] introduced overlapping segments and window
functions, achieving better variance-resolution tradeoffs.

The Welch spectral estimate is given by:

Pwelch(f) = (%) xk = (0K - 1%)2 o)

where W(f) represents the window function frequency response and X, (f) denotes the k-th segment DFT.

B. Advanced Spectral Methods

Thomson's multitaper method [4] employs discrete prolate spheroidal sequences (DPSS) as optimal tapers,
concentrating energy within a specified bandwidth while minimizing leakage. The multitaper estimate becomes:
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PMTM(f) = (£) Sk = 0K — 1[En = ON — 1 hk[n]x[nle - j2nfn|* (2)
where h,[n] represents the k-th DPSS taper. This approach reduces bias but increases computational complexity
significantly.

C. Data Loss Handling Techniques

Missing data presents fundamental challenges in spectral estimation. Common approaches include zero-filling
(introduces bias), interpolation (limited to small gaps), and direct computation from available samples
(increased variance). Bretthorst [18] demonstrated Bayesian methods for irregular sampling, while Stoica and
Babu [19] proposed SPICE, showing robustness to missing data patterns. However, these methods often
sacrifice either computational efficiency or spectral accuracy.

D. Research Gap and Contributions

Despite these advances, existing methods fail to simultaneously address three critical requirements for
operational radar systems: (1) maintaining spectral fidelity under >20% data loss while preserving frequency
resolution, (2) computational efficiency for real-time processing with latency <10 ms per frame, and (3)
robustness across diverse noise conditions spanning SNR ranges of 0-30 dB without parameter tuning. Classical
methods like Bartlett and Welch assume complete data, Thomson MTM demands excessive computation (5%
overhead), and recent machine learning approaches [6], [25] require extensive training data and lack theoretical
guarantees. This study bridges this gap through an integrated adaptive weighting framework that combines
statistical segment quality assessment with circular memory architecture for continuous radar data streams.

PROPOSED METHODOLOGY

A. Circular Memory Architecture

The circular buffer maintains L samples organized efficiently for streaming radar data, enabling continuous
acquisition without buffer reallocation:

buffer[ptr] = x[n], ptr = (ptr + 1) mod L  (3)
where ptr indicates the current write pointer, ensuring efficient memory utilization for real-time radar data
streams.

B. Adaptive Weighted Multitaper Estimation

1) Signal Segmentation
Input signal x[n] of length N undergoes division into K overlapping segments to enhance statistical reliability:

X [m]=x[kR+m],m=0.1,..M-1, k=0,1,..K-1 (4)

where R = M(1 - p) represents the step size, and p denotes the overlap ratio (typically 0.5 for optimal variance
reduction).

2) Adaptive Weight Calculation
For each segment k, we compute adaptive weight a;, incorporating energy and statistical characteristics:

a = ap X exp(-B x Ex/M) x (1 +yxS;)  (5)
where Ex = Ym=oM" [x[m][? (segment energy) and Sk = var(xx[m]) (segment variance).

3) Parameter Selection and Optimization

The parameters a, = 1.0, B = 0.05, and y = 0.2 were determined through systematic optimization across 500
Monte Carlo trials spanning SNR levels 0-30 dB with 30% random data loss. The base weight a, provides unit
normalization ensuring unbiased spectral integration. The energy attenuation factor f = 0.05 prevents over-
weighting of high-energy segments that may contain saturation artifacts or strong interference.

The systematic optimization involved exhaustive grid search across € [0.01, 0.20] with step 0.01, and ye
[0.05, 0.50] with step 0.05, testing all 200 parameter combinations. Performance evaluation used Quality Index
(QI) as the primary metric. The selected parameters p=0.05 and y=0.20 achieved optimal balance: values >0.08
caused over-attenuation of valid high-energy segments (QI dropped to 0.982), while y>0.30 amplified noise
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variance artifacts (QI reduced to 0.976). Performance degradation exceeded 5% QI threshold outside the ranges
B € [0.03, 0.08] and ye [0.15, 0.30].

The variance enhancement factor y = 0.2 emphasizes segments with signal activity over pure noise regions,
improving detection of weak targets embedded in noise. Section V-G presents comprehensive sensitivity
analysis validating these parameter choices across diverse operating conditions.

4) Windowed Periodogram Computation
Each segment undergoes Hamming windowing to reduce spectral leakage:

w[m] = 0.54 - 0.46cos(2nm/(M-1)) (6)
The windowed periodogram for each segment k becomes:
Pk(f) = X m=0M-1 xk[m]w[m]e-j2nfm[?* / > m=0M-1 w?[m] (7)
5) Weighted Spectrum Integration
The final spectrum estimate combines weighted periodograms from all valid segments:
P() = Yk=0K-1 akPk(f) / Yk=0K-1 ak (8)

C. Missing Data Handling Strategy

Missing samples receive special treatment based on data loss patterns. For random loss, segments containing
>50% missing data receive zero weight (a, = 0), effectively excluding them from spectral integration. For burst
loss patterns common in radar applications due to momentary signal obstruction or receiver saturation, we
implement adaptive segmentation that avoids boundaries of missing data blocks. Mixed patterns combine both
strategies, with segment quality assessment determining the optimal approach. This adaptive exclusion
maintains spectral integrity while maximizing utilization of available data.

D. Computational Complexity Analysis

The algorithm complexity comprises three main components: segmentation O(N), weight calculation O(KM),
and FFT computation O(KM log M). The total complexity is O(KM log M), comparing favorably with
Thomson MTM at O(Ktaber x KM log M), where Ktaber typically equals 5-8 for adequate spectral estimation.

For typical radar parameters (N=1024 samples, K=8 segments, M=128 samples per segment), the proposed
method requires approximately 8,192 floating-point operations compared to 40,960 operations for Thomson
MTM with Ktaber =5. This represents an 80% computational reduction while maintaining superior performance
across all evaluated metrics (Table I). The reduced complexity enables real-time implementation on embedded
radar processors with latency <5.2 ms per frame.

Experimental Setup

A. Signal Model
The test signal comprises three sinusoidal components with distinct frequencies to evaluate spectral resolution:
X[n] = Ajcos2rfinTs) + A,cos(2rf,nTS) + Azcos(2xnf3nTs)  (9)

with frequencies f; = 100 Hz, f, = 200 Hz, f; = 350 Hz, amplitude A = 1, and sampling frequency F, = 1000
Hz. This configuration tests the method's ability to resolve closely-spaced and widely-separated frequency
components.

B. Noise Model
Additive white Gaussian noise (AWGN) is added to simulate realistic radar conditions:
y[n] =x[n] +on[n] (10

where 6% = Pg;gnq://(107(SNR/10)) and n[n] ~ N(0,1). The SNR range 0-30 dB covers typical radar operating
conditions from challenging (low SNR) to favorable (high SNR).

C. Enhanced Missing Data Simulation

Three missing data patterns simulate realistic radar failure modes:
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» Random Loss: 30% of samples randomly set to zero, simulating uncorrelated dropouts from thermal noise or
weak signal conditions.

» Burst Loss: Consecutive blocks of 10-50 samples removed, representing receiver saturation, momentary
obstruction, or synchronization loss.

* Mixed Patterns: Combination of random (20%) and burst (10%) losses, reflecting complex operational
scenarios with multiple simultaneous degradation mechanisms.

D. Performance Metrics

Four complementary metrics quantify spectral estimation performance:

* Quality Index (QI): Normalized cross-correlation between estimated and reference spectra, measuring overall
spectral fidelity (range: 0-1, higher better).

* Frequency Resolution Error (FRE): Normalized root mean square error quantifying deviation from ideal
spectrum (lower better).

*Output SNR: Ratio of peak signal power to noise floor in dB, indicating processing gain or loss.

* Peak Side Lobe Ratio (PSLR): Ratio of main lobe peak to highest side lobe in dB, measuring spectral leakage
suppression (more negative better).

RESULTS AND DISCUSSION

A. Power Spectral Density Comparison

Figure 1 presents comparative power spectral density estimates at SNR = 20 dB with 30% missing data. Our
method exhibits significantly improved main lobe definition with notably reduced spectral leakage compared to
classical approaches. Side lobe levels measure 15 dB lower than Bartlett and 8 dB lower than Welch methods,
directly improving weak signal detection capability. The three frequency components (100, 200, 350 Hz) are
clearly resolved with minimal inter-component interference.

Comparative PSD Estimation
(SNR = 30 dB, 30% Missing Data)g

Key Performance Metrics: = Bartlett Method
* Proposed PSLR: -16.0 dB
b * Quality Index: 0,997 Welch Method
10! « Frequency Resolution Error: 1.7 === Thomson MTM
* Missing Data Ratio: 30% \-_A _A_‘ = Proposed Method

T -

100 Hz

10°®

10-11

10-16

1G—21

Power Spectral Density

10 26

10-31

0 100 200 300 400 500
Frequency (Hz)

Figure 1: Comparative power spectral density estimation showing proposed method (blue), Bartlett (red),
Welch (green), and Thomson MTM (magenta) at SNR=20dB with 30% missing data.
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B. Quality Index Performance

Figure 2 demonstrates Quality Index versus SNR performance across the 0-30 dB range. At low SNR (0-5 dB),
the proposed method achieves QI = 0.93-0.95 compared to Bartlett's 0.65-0.75 and Welch's 0.78-0.82. This 15-
20% improvement proves critical for target detection in challenging environments.

At moderate SNR (10-20 dB), the performance gap widens: our method maintains QI > 0.96 while classical
methods plateau at 0.85-0.88. At high SNR (25-30 dB), all methods converge above 0.95, with the proposed
approach maintaining a slight advantage (QI = 0.997). The consistent superiority across all SNR regimes
validates the adaptive weighting strategy.

Quality Index Performance Comparison
(30% Missing Data, 100 Monte Carlo Trials)

1.00 T
0.95
Ql = 0.997
at High SNR
0.90 1
= 0.85
<
£
3 0.80
2
=
<
0.75
0.70
—&k— Thomson MTM
—&— Proposed
0.60 ' -
o] 5 10 15 20 25 30
SNR (dB)
Figure 2: Quality Index versus SNR showing consistent superiority of proposed method (15-20% improvement
at low SNR).

C. Frequency Resolution Error Analysis

Figure 3 presents Frequency Resolution Error versus SNR performance. The proposed method maintains stable
FRE = 1.5-1.8 across all SNR levels, demonstrating robustness to noise variations. In contrast, Bartlett's method
shows FRE = 3.5-4.2, Welch achieves 2.8-3.2, and Thomson MTM reaches 2.0-2.3. The 40-50% reduction in
FRE compared to classical methods enables more accurate frequency component identification, crucial for
Doppler radar and frequency-hopping communication systems.

Frequency Resolution Error Analysis
(Lower Values = Better Performance)
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- Welch

—&— Thomson MTM

~§~ Proposed

4.59

4.0

3.5

3.0

40-50% Reduction
Compared to Classical Methods

Stable FRE = 1.5-1.8
Across All SNR Levels
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Figure. 3: Frequency Resolution Error showing stable performance of proposed method (40-50% reduction vs
classical methods).
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D. Output SNR and Processing Gain Analysis

Figure 4 illustrates the input-output SNR relationship with a 45° reference line representing ideal preservation.
For input SNR = 10 dB, the proposed method achieves 14.6 dB effective output SNR (representing a 4.6 dB
equivalent processing gain through multi-segment averaging) versus Bartlett's 8.5 dB output (2.5 dB
degradation).*

*Important Note: The "processing gain" represents effective SNR improvement through intelligent segment
weighting and multi-segment statistical averaging, not true signal amplification. The adaptive weighting
emphasizes high-quality segments while suppressing corrupted portions, yielding superior spectral estimates
that behave as if processed from higher-SNR data. This effective gain proves valuable for weak target detection
in radar applications.

Output SNR vs Input SNR
(Processing Gain Analysis)

35

—= Reference (No Gain)

—o— Bartlett
—o— Welch

301 —e= Thomson MTM .
—e— Proposed

25

Output SNR (dB)
G S

-
o

0 5 10 15 20 25 30
Input SNR (dB)

Figure 4: Output vs Input SNR showing effective processing gain through adaptive weighting and multi-
segment averaging (not true signal amplification).

E. Peak Side Lobe Ratio Evaluation

Figure 5 presents PSLR performance versus SNR. The proposed method achieves -16 dB PSLR at SNR = 20
dB, compared to -12 dB for Welch, -14 dB for Thomson MTM, and -8 dB for Bartlett. The 4 dB PSLR
advantage over Thomson MTM translates to approximately 2.5x better dynamic range for detecting weak
targets near strong returns, crucial for multi-target radar scenarios and clutter suppression.

PSLR Performance Evaluation
(More Negative = Better Suppression)

-16 dB at SNR = 20 dB
2.5x Better Dynamic Range

-10

4 dB Advantage
over Thomsan MTM

Peak Side Lobe Ratio (dB)

-16 —§- Bartlett
- Welch

—&— Thomson MTM

—§- Proposed

o 5 10 15 20 25 30
SNR (dB)

Figure 5: Peak Side Lobe Ratio demonstrating superior spectral leakage suppression (4 dB advantage over
Thomson MTM).
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F. Comparative Performance Summary

Figure 6 presents a hexagonal radar chart comparing normalized performance across six dimensions: Ql, (1-
FRE), Normalized SNR, Normalized PSLR, Processing Speed, and Robustness. The proposed method achieves
85-97% across all metrics, demonstrating balanced excellence. Table 1 provides detailed quantitative
comparison at SNR = 20 dB.

Normalized Performance Comparison
(SNR = 20 dB, 30% Missing Data)

= Bartlett
g Resolution — Welch
w——=_ Thomson MTM
w— Proposed

Quglity Index

Performance Scores (Proposed Method):
« Quality Index: 99.7%

« Freq. Resolution: 85.0%

« SNR Gain: 90.0%

« PSLR: 95.0%

« Speed: 70.0%

« Robustness: 97.0%

Figure 6: Hexagonal radar chart showing balanced superiority across all performance dimensions.

Table 1: Comparative Performance Metrics at Snr =20 dB

Method Ql FRE | PSLR (dB) | Processing Time (ms) | Improvement vs Best Classical
Bartlett 0.75 3.8 -8 2.3 Baseline
Welch 0.82 3.0 -12 3.8 +9.3%
Thomson MTM | 0.85 2.1 -14 15.6 +13.3%
Proposed 0997 | 17 -16 5.2 +17.2%

G. Parameter Sensitivity Analysis

Tables 2, 3, and 4 present comprehensive sensitivity analysis validating parameter choices across varying
conditions.

Table 2: Performance Sensitivity to Energy Factor p.

B Value Ql FRE PSLR (dB) Comments
0.03 0.994 1.8 -15.2 Slightly reduced discrimination
0.05 0.997 1.7 -16.0 Optimal performance
0.08 0.995 1.9 -15.8 Over-attenuation effects
0.10 0.992 2.1 -15.3 Reduced energy sensitivity
0.15 0.988 2.4 -14.8 Poor segment weighting

Table 3: Performance Sensitivity to VVariance Factor y.

vy Value Ql FRE PSLR (dB) Comments
0.10 0.991 1.9 -15.2 Under-emphasis of variance
0.15 0.993 1.8 -15.5 Good but not optimal
0.20 0.997 1.7 -16.0 Optimal balance
0.30 0.994 1.9 -15.7 Over-emphasis artifacts
0.40 0.989 2.2 -15.1 Variance distortion
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Table 4: Performance Under Different Data Loss Ratios

Data Loss % Ql FRE PSLR (dB) Usable Segments Degradation
10% 0.998 15 -17.2 8/8 Minimal
20% 0.997 1.6 -16.5 7/8 Slight
30% 0.997 1.7 -16.0 6/8 Acceptable
40% 0.990 2.1 -14.8 4/8 Moderate
50% 0.975 2.8 -12.5 3/8 Significant

H. Enhanced Statistical VValidation

Monte Carlo analysis (1000 trials) with ANOVA confirms statistical significance of performance improvements.
F-statistic = 247.3 (p < 0.001) indicates highly significant differences between methods. Post-hoc Tukey HSD
tests show all pairwise comparisons achieve p < 0.001, confirming the superior performance of the proposed
method is not due to random chance.

Table 5 presents comprehensive Monte Carlo statistics at SNR = 20 dB with 30% data loss, demonstrating high
consistency across diverse noise realizations and missing data patterns. The low standard deviations (<0.2% for
Ql, <5% for FRE) and minimal outlier counts (<0.2%) validate the method's robustness.

Table 5: Monte Carlo Statistics (1000 Trials, SNR=20db, 30% L 0ss)

Metric Mean Std Dev 95% CI Outliers
Ql 0.9968 0.0012 [0.994, 0.998] 2 (0.2%)
FRE 1.698 0.078 [1.6,1.8] 1 (0.1%)
PSLR (dB) -15.98 0.31 [-16.3, -15.7] 0 (0%)

|. Data Loss Performance Boundaries

At 50% data loss with only 3 usable segments remaining (Table 1V), the method demonstrates Q1=0.975
through strategic quality-over-quantity segment selection. The adaptive weighting aj preferentially selects
segments with highest integrity, maintaining spectral fidelity despite dramatically reduced statistical averaging.
However, this represents the practical operational limit—beyond 50% loss, insufficient segments remain for
reliable spectral reconstruction. The transition from "acceptable” (30% loss) to “significant” degradation (50%
loss) occurs when fewer than 4 segments survive the 50% missing-data threshold, compromising the statistical
foundation of multi-segment estimation.

Limitations And Future Work

A. Current Limitations

Performance degradation beyond 50% data loss: Table IV demonstrates QI drops to 0.975 at 50% loss with only
3 usable segments remaining. The method requires minimum segment density for reliable statistics—below this
threshold, insufficient data exists for accurate spectral reconstruction regardless of algorithm sophistication.

Stationary signal assumption: The method assumes spectral characteristics remain constant within the 1024-
sample analysis window (1.024 seconds at Fs=1000 Hz). Non-stationary signals with time-varying spectra show
performance degradation. Testing with frequency-modulated chirp signals revealed 15-25% QI reduction,
indicating the need for time-frequency analysis extensions for rapidly varying spectra.

Minimum segment length requirement: Segments shorter than 64 samples (M<64) provide insufficient
frequency resolution and statistical reliability. This constraint limits applicability for ultra-short data records or
applications requiring extremely fine time localization, such as transient radar event detection.

B. Future Research Directions

Integration with time-frequency analysis: Extending the method to non-stationary signals through Short-Time
Fourier Transform (STFT) or wavelet-based adaptive segmentation would enable processing of frequency-
modulated and pulsed radar signals. Adaptive window length selection based on local stationarity could
maintain performance for time-varying spectra.

Machine learning optimization of parameters: While a0=1.0, p=0.05, y=0.2 prove optimal across tested
conditions, reinforcement learning could dynamically adjust parameters based on real-time signal
characteristics. Neural network-based segment quality prediction might improve adaptation to novel interference
patterns not present in training data.
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Extension to MIMO radar systems: multi-channel radar systems with spatial-temporal processing require joint
optimization across antenna array elements. Extending adaptive weighting to spatial-spectral domains could
enhance target localization while maintaining robustness to individual channel failures.

Hardware acceleration: GPU implementation using CUDA or FPGA deployment could reduce processing
latency below 1 ms for real-time applications. Parallel segment processing and optimized FFT libraries would
enable scaling to higher bandwidth signals and longer integration times.

Conclusions

We present an adaptive weighted multitaper estimator that maintains spectral fidelity under 30% data loss—a
critical threshold for operational radar systems. The novel weighting scheme a; = ay x exp(-B x Ex/M) x (1 +vy
x §,) intelligently combines segment energy and variance statistics, enabling robust spectral estimation despite
incomplete data acquisition. Systematic parameter optimization through 200-combination grid search
established optimal values p=0.05 and y=0.20, validated across 1000 Monte Carlo trials.

Performance evaluation demonstrates 15-40% improvements across complementary metrics: Quality Index
reaches 0.997 (17.2% advantage over best classical method), Frequency Resolution Error maintains 1.7 (40-50%
reduction), and Peak Side Lobe Ratio achieves -16 dB (4 dB superiority over Thomson MTM). These gains
prove statistically significant (ANOVA p<0.001) and consistent across SNR ranges 0-30 dB, validating the
method's practical utility.

Computationally, our approach requires approximately 8,192 operations versus 40,960 for Thomson MTM—an
80% reduction enabling real-time implementation on embedded radar processors with <5.2 ms latency per
frame. This efficiency-performance balance addresses the critical gap in existing methods that sacrifice either
computational tractability or spectral accuracy.

The methodology offers immediate applications across radar, sonar, and communication systems requiring
frequency analysis despite incomplete data acquisition. Integration with circular memory architecture ensures
seamless operation in continuous data streams common to operational platforms. Future extensions to time-
frequency analysis and MIMO radar systems promise broader applicability while maintaining the core
advantages of adaptive segment weighting.

Data And Code Availability

Hardware specifications: Intel Core i7-10700K processor @ 3.8 GHz, 32 GB DDR4-3200 RAM, Windows 11
Pro 64-bit operating system. Software environment: MATLAB R2023a with Signal Processing Toolbox and
Statistics Toolbox; Python 3.9.16 with NumPy 1.24.3, SciPy 1.10.1, Matplotlib 3.7.1. All experimental
parameters, random seeds, and analysis scripts are documented in Appendix A for full reproducibility. Research
data and implementation code are available from the corresponding author upon reasonable request.
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Appendix A: Detailed Parameter Tables
Table 1: Blcomplete Experimental Parameters

Parameter Value Description
Sampling Frequency (Fs) 1000 Hz Signal sampling rate
Signal Length (N) 1024 samples Total signal duration
Segment Length (M) 128 samples Individual segment size
Segment Count (K) 8 Number of overlapping segments
Overlap Ratio (p) 0.5 50% segment overlap
Base Weight (00) 1.0 Normalization constant
Energy Factor (B) 0.05 Energy attenuation parameter
Variance Factor (y) 0.2 Variance enhancement parameter
Window Function Hamming Spectral windowing function
Missing Data Ratio 30% Simulated data loss ratio
Signal Frequencies 100, 200, 350 Hz Multi-tone test signal
Monte Carlo Trials 1000 Statistical validation trials

Table 2: B2hardware And Software Environment

Component Specification
Processor Intel Core i7-10700K @ 3.8 GHz
Memory 32 GB DDR4-3200

Operating System Windows 11 Pro 64-bit
MATLAB Version R2023a
Required Toolboxes Signal Processing, Statistics
Python Version 3.9.16

Required Packages

NumPy 1.24.3, SciPy 1.10.1, Matplotlib 3.7.1

Development Environment

PyCharm Professional 2023.1

Parallel Computing

8-Core parallel execution

Storage

1 TB NVMe SSD
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